0=-16t^2+14

Simple and best practice solution for 0=-16t^2+14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+14 equation:



0=-16t^2+14
We move all terms to the left:
0-(-16t^2+14)=0
We add all the numbers together, and all the variables
-(-16t^2+14)=0
We get rid of parentheses
16t^2-14=0
a = 16; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·16·(-14)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*16}=\frac{0-8\sqrt{14}}{32} =-\frac{8\sqrt{14}}{32} =-\frac{\sqrt{14}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*16}=\frac{0+8\sqrt{14}}{32} =\frac{8\sqrt{14}}{32} =\frac{\sqrt{14}}{4} $

See similar equations:

| (2x+10)(2x+6)-60=140 | | x+5/4=-3 | | 3.5=31.5w | | 102=69-7x | | 3y+y=144 | | 171-u=215 | | 168=-v+99 | | (4/5)y+(1/3)y=16/5 | | 22-4x=2x+126 | | 11x-3=7x=25 | | (4/5)y-4=(-1/3)y-(4/5) | | 3x=-1/18 | | 10x2+78x+144=0 | | 15-24-4x=-79 | | 3x=438 | | 8n+15=4 | | -4t^2+14-12=0 | | 0.25t-0.88=0.03t | | 0.5p-3.5=1.2 | | 14-3x=82 | | 6x-18-3x+12=3 | | 6.5x+2x=836.5 | | (2x+10)(x+6)=2x2^+258 | | -x+198=43 | | 1.22(x)=-11.8x+-3.0 | | 56=156-x | | 8x+2=6+4x | | -u+58=196 | | -3(-31/3x+1)=-43 | | -4(3r-3)+4=88 | | -3(-6v+3)=-99 | | 4(1+4r)=100 |

Equations solver categories